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Abstract—The two-dimensional problem of an arc-shaped crack lying along the interface of a fixed
circular rigid inclusion embedded in an elastic matrix is considered. The assumption that the
inclusion is rigid provides the same mathematical behavior of an oscillatory singularity at the crack
tips as if an elastic inclusion had been assumed but in a simpler mathematical problem. In contrast
to previous studies which determine only the radial displacement of the crack faces, a simple closed-
form formula for the entire displacement throughout the elastic matrix is determined for a far-field
biaxial load with an infinitesimal rigid rotation. From this expression a natural decomposition of
the problem is identified which allows interpenetration regions to be determined easily. [t is found
that most loading situations predict the elastic crack face to have a large interpenctration region.
Thus if the behavior of the material near the crack is to be accurately determined it is necessary to
use & model which allows the crack faces to be in contact.

INTRODUCTION

In fiber-reinforced composites, an important mechanism of damage growth is the debonding
of the fiber~-matrix interface. One of the first steps toward a better understanding of such
damage growth is to construct and solve simplificd mathematical models of cracks along
circular interfaces. These solutions may then indicate which parameters may be important
for damage growth,

The first mathematical models of a crack along a circular inclusion in an clastic matrix
can be found in England (1966), Periman and Sih (1967) and Toya (1973, 1974). England
(1966) considered an clastic inclusion with a uniformly pressurized crack and derived an
expression for the displacement of the crack faces at the interface. Perlman and Sih (1967)
determined the potentials for a concentrated point force in the material which could be
used as a Green function for an arbitrary loading. They also developed expressions for the
stress at the interfuce. Toya (1973) considered a pressurized crack along a rigid inclusion
and Toya (1974) assumed a fully open traction-free crack along an elastic inclusion opened by
a biaxial tension at infinity. In Toya (1974), the derivatives of the Kolosov-Muskhelishvili
potentials were determined and from these, formulae for the stress and the displacements
along the interface were established. However, all these solutions exhibit the same unphysical
interpenetration of the crack faces due to an oscillatory singularity similar to that found in
linear elastic studies of Griffith interfuce cracks (e.g. England, 1965; Erdogan, 1963;
Lowengrub and Sneddon, 1973 ; Willis, 1971). If these interpenetration zones are small,
these solutions may be an acceptable approximation to the physical situation away from
the crack tips. However, as will be seen below, only hydrostatic teasion at infinity always
predicts smalil interpenetration zones analogous to the Griffith interface crack under uniaxial
tension normal to the crack faces. For the other natural far-field loadings in the elastic
matrix, large interpenctration zones are predicted at the interface, thus making their pre-
dictions of the material behavior ncar the crack suspect. Therefore, in most cases, an
acceptable model for these cracks must admit regions in which the crack faces come into
contact.

For the following, it will be assumed that the inclusion is rigid and fixed. As will be
seen, all the interesting mathematical behavior is retained in this simpler mathematical
model. The biaxial tension problem with open traction-free crack faces is re-examined and
the displacements and stresses are seen to be the superposition of the displacements and
stresses of the three natural far-field loadings. For the first time, formulae for the stresses
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and displacements throughout the body are developed and their predictions will be examined.
It is seen that large interpenetration zones are predicted in most loading situations.

STATEMENT AND ANALYSIS OF THE PROBLEM

Consider the two-dimensional problem of a body consisting of a fixed circular rigid
inclusion embedded in an infinite elastic matrix. At the interface, it is assumed that these
two differing materials are (i) perfectly bonded, across which stresses and displacements
are continuous, or (ii) unbonded. across which displacements may be discontinuous. We
shall call the unbonded region a crack. We shall denote by D ~ and D * the regions occupied
by the elastic matrix and the rigid inclusion respectively. We shall denote the inter-
face between D™ and D~ by C and denote that part of the interface along which the
crack exists by A5 and that part of the interface where the rigid inclusion is bonded
to the elastic matrix by A, (see Fig. 1). We shall use the complex variable notation as
found in Muskhelishvili (1954) and Gladwell (1980). and will place the origin of the com-
plex plane at the center of the rigid inclusion. The inclusion will be assumed to occupy
|z] < L. the elastic matrix |z| > 1, and the axes will be placed such that a crack of length
22, 0 <a <, is symmetrically placed with respect to the positive real axis, i.e..
As={t=re": —x <0 <aj. Let 1,.(2). 1,.(z) and t,(=) denote the polar stresses and u
and ¢ denote the displacements parallel to the real and imaginary axes respectively. We
have the following mathematical problem. Determine (. v, 1,,. T,4. Too) Such that they satisty
the cquations of lincar elastostatic equilibrium in the absence of body forces for plane strain
or plane stress conditions with boundary conditions:

traction-free crack faces .+, =0 on A, ()
continuity of displaccments  u+iv =0 on A, (2)
The Kolosov Muskhelishvili potentials ¢ and o will automatically satisfy the equations

of equilibrium and the constitutive law of lincar elasticity for the elastic matrix if they are
analytic in D~ and the displacements and polar stresses are expressed as

2p(u+ir) = kp(z) =z (Z) =¥ (5) (3)
O=r1,+1y = 2[(D(:)+(b(f)] 4
€OO

N
> o\
/KJ\

Fig. I. The geometry of the fixed rigid inclusion D ' the elastic matrix D ™, and the far-ficld loading
of a hiaxial tension and infinitesimal rigid rotation.
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ZEe = tpy—1,+ 2ty =2 [Z0'(2) + V()] &)

where ¥(z) = ¢(3). ® = ¢'. ¥ = ¢’ and. under plane strain conditions, k = 3 —4v where
vis Poisson's ratio. For generalized plane stress conditions. k = 3 —4v* where v* = v/(1 +v).
Thus if 0 <v <! then in plane strain 1 <k <3 and in generalized plane stress
(5/3) <k < 3.

Thus the entire problem becomes to determine analytic functions in D~ which satisfy
the proper boundary conditions. These boundary conditions are of two basic types, the far-
field loading conditions of a biaxial tension and infinitesimally rigid rotation and the
boundary conditions of an open crack or perfect bond at the interface.

Let us consider the far-field loading conditions first. We shall require stresses and
displacements to be single valued in the elastic matrix. the stresses to be bonded near
infinity, and. since the body is in equilibrium, the total force applied to the elastic matrix
across the interface to be zero. Thus ®(-) and W(z) must be bounded and each of the form
k+0(z) as - — oo (see Gladwell, 1980). A biaxial tension at infinity with principal stresses
T,and T, where T, is at an angle ¢ with the positive real axis (see Fig. 1) requires

O(0) = 1,,(0) +t0(0) = T+ T
and

Z(0) = ¢ * [tw(00) —1,,(00) + 2it,o(20)] = (T, =T ) e~ . (6)
From (4) then Re () = (7, + T-) and thus
OGE) = UT, +T)+iCo+o0(z7") )

as 2 = o, where Cy is real and undetermined.
Furthermore, from (5)-(7) then

W)= T, =T)e ™+o(z"") as z-cc. 8)

By considering the potentials (z) = iCyand W(z) = 0itcan be shown that the displacement
corresponding to these potentials is an infinitesimally rigid rotation about zero (or equi-
valently infinity), for which the stresses are zero throughout the complex plane. Thus if we
define &, to be the prescribed infinitesimally rigid rotation about infinity then

2ue,
Co= T
Thus the far-field loading conditions of biaxial tension and a prescribed infinitesimally rigid
rotation ¢, about o0 determine the asymptotics of ®(z) and W(z) as z = 0.
We shall now consider the boundary conditions at the interface. In an effort to simplify
the boundary conditions there, we will extend the potential ®(z) which is defined only for
the elastic matrix D ~ to the complementary domain D* by

() = —<b<§)+ %(b'(é>+ l"’(l) @

Equation (9) allows us to express W(z) in terms of ®(:) for ze D~ and ®(w) where
w=(l/z)eD" as

\P(z)=:‘ztb(:)-i-:‘zd)(é)—-z“(b’(:) for zeD". (10)

Note that if f(=) is analytic for |z] > | then f(1/z) is analytic for 0 < |z] < 1. Since ® and
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¥ are analytic in D~ then (9) extends ® to be analytic in D* except possibly at - = 0. At
- = 0 we have from (7)-(9) that

D) = (T, =T)e*=""+0() as z—0. (1
From (4). (5). (7). and e ** = Zz~', one can obtain
T, +ity = OE) O/ +5(E-2"")YP(E), zeD. (12)
Upon differentiating (3) and proceeding in a similar manner, one obtains
2u( +iv’) = kOE)+ D15 ~3(E~-"YP(E), zeD". (13)

We shall assume @ continuous on C = 4, U 45, as - — 1€ C from either D* or D~ except
at possibly a finite number of points ¢, of C near which

PG < Alz-c¢|™* O0<ax<l. (14)
In addition it will be assumed that
limI (l=nNd'(re”y=0 15
for all values of 0, except possibly at the points ;. It can be shown that these conditions
lead to

lim (-2 )W) =0, z=rc’ (16)

We shall define the following notation:

letd (1) = I_in}(l)(:).

where 1 = e¢” and ze D . ®* (1) will represent the complementary limit at z ~ (¥, i.e.,zeD*
and z approaches te C. Then (12) and (13) allow the boundary conditions (1) and (2) to
be expressed in terms of the potential @ as

O (-0 () =0 (redy) (17
and

KO- (D+D* (1) =0 (1€ Adp). (18)

We shall now briefly consider the problem of a perfectly bonded inclusion and identify

the natural loading conditions at infinity. We shall then look at the model which includes
a crack along the inclusion and assumes the crack faces are fully open and traction-free.

Problem |

We shall assume that the interface is entirely perfectly bonded, i.c., C = 4,. The
boundary condition of a perfect bond at the interface of the elastic matrix and fixed rigid
inclusion can be written in terms of the unknown potential ® as

KO- ()+d*()=0 for reC. 19
By inspection, it may be seen that

e I L
(T —QI_(Tz*Tu)C"”: * for zeD

O(z) = {(T +Ty+
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and

2ipe .
4K

¢(:)=—x|:§(T.+T2)+ ]+§(T2—T.)e2"’:‘: for zeD* (20)

satisfies (19). (7). and (11). and are analytic forze D~ and ze D* — {0}.
The displacement field throughout the elastic matrix can now be constructed and it is
found that

2u(u+it) = {(T + T)(k-DE-3""Y+2ipe (=371

+§(T:—-T,)|:ez"“(:"—f)+%e'z“":"z(:—:'")jl for zeD~. (21

It can be seen from (21) that the general loading situation considered may be conveniently
expressed as the superposition of the three natural loads;

(1) hydrostatic tension or compression T, = T, =T # 0and¢, = 0;
(it) pureshear T, = - T, =S #0and ¢, =0;and
(111) an infinitesimally rigid rotation¢, #0,and T, =T, = 0.

The displacement of the elastic matrix under a hydrostatic tension (T > 0) consists entirely
of the outward radial displacement

T
u(z) = -~ (k=1)(r—-r"") where z=re
4u

and the radial and tangential displacements, u, and u,, are related to the Cartesian dis-
placements « and ¢ by

u(2)+iv(z) = " (u,(2) +iuy(2)). 22)

The displacement of the elastic matrix under a hydrostatic compression (7" < 0) similarly
consists entirely of the inward radial displacement

u(z) = 4?-,; (k=D(r=r").

Thus the deformation of the matrrix is given by

z4u(z)+ i) = e [r+ %(x— Yr—r- ')]

and it can be shown that if (= T/2u) > 1/(x — 1) then the radial distance from the origin
after the deformation is not monotonically increasing for all r > 1. This would lead to the
elastic material interpenctrating itself and the inclusion. Thus it is assumed that
(—T/2u) € 1/(x—1). The breakdown of the solution at this load level may be caused by
large strain levels which can no longer be accurately predicted by the linear theory of
elasticity. The radial and tangential displacements corresponding to a pure shear can be
written as

! )cos 2(0—9)) —i(l + -h—lr—> sin (2(0—(p))].

2
Kr

1, (2) +iup(z) = %(r—r‘ l)I:(l -
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Again, so that interpenetration is not allowed

|S| < 12k
2u  I2k+(k+ 1)

The displacement of the elastic matrix under an infinitesimal rigid rotation consists entirely
of the tangential displacement u,(z) = . (r—r~"') where - = re?. Examples of the dis-
placements corresponding to each of these loadings are illustrated in Fig. 2.

In a similar manner, the stress fields can be determined from (4) and (5) and can be
conveniently considered as the superposition of the stresses resulting from the three natural
loadings.

Problem 2
We shall assume that a crack of length 2a, 2 > 0, exists along the interface with crack
faces open and traction-free. The boundary conditions at the interface become

KO ()+®d* (1) =0 for tedp, and O ()—d () =0 for teds. (23)

Note that &~ (¢1) —®* (1) = 0 requires ® to be continuous and thus analytic across 45 and
therefore we are looking for a function @ that is analytic everywhere except at zero and
along A, and which satisfies (7) and (11). We shall rewrite @ in the following form:

2ine I
B b T=Ty et )

D) = Dy(2)+h(z) where h() = (T +Ty))+ —
I +x

Now @,(z) will be analytic everywhere in the complex plane except along A, and By (z) —
0 as z — o. Furthermore, the jump condition across A4, for ®(z) in (23) becomes for ,(2)

KOy (D) +D5 (1) = = (k+1)h(z) for teAd,. (25)
The solution to this Riemann-Hilbert problem may be calculated from

x| Ao de

2y = —(k+1 2
Dy(2) (x+1) i A,,X.Q‘(’) [—= (26)
where x(2) is the solution to the homogeneous Riemann-Hilbert problem
K (D+x () =0 for teA,. 27)

It is known from previous studies that the stresses are unbounded near the endpoints e”
and e " and since

. (D +itg(t) = (k+ 1)O (1) for €A,

the potential ® is also unbounded there. Thus the homogeneous solution must be chosen
to be

=20 L where do= i i 28)
x(") - z_eiﬂ z__c—i: where -0 _2—2n n(h)

with the branch of w** determined by —a < arg w < 2m~«x.
If this expression for y is substituted into (26) and simplified by the integrals (A1) and
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44

(i}

~y
-

YR 3

Fig. 2. The deformation of a fixed rigid inclusion perfectly bonded to an elastic matrix for the

natural loads: (i) hydrostatic tension, (ii) pure shear with ¢ = n/4, and (iii) an infinitesimal rigid

rotation, e, = 0.5. The reference configuration (R) consists of concentric circles of radii 1, 1.5, 2
and 3 and the axes.

SAS 28:8-6
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(A2) found in the Appendix, then @ is found to be

s 1 o
O = —HTe=T)e™ 1) — [31:— l]+[s fK]X.(z)(Z—bz) @)

0

'™

where a,, a,, and b, are the first few terms of the series expansion of y about zero and
infinity, respectively. Their values can be found in the Appendix.
From (29) and (10), we may now write ¥ as

¥() = — [0 - HT =T e ¥ - '(1/:)—[— - l]

Ao { Ay

[(mn) z'i”] (1/z ):’[——b] (30)

where

[ [/z—e Yo —ze™ z—e Yo
= l -) = . i - 2ia . .
(/=) l/:'—e""‘( 1/5-¢c" ) z~c ™" (e z—e”)

These may be integrated using the results (A3)-(A6) in the Appendix to determine the
Kolosov-Muskhelishvili potentials

, | 2
$(2) = = (Ta=T)e™ R, (2) ~ [ (T +Ta)+ i’~‘-’—] R\(z)
Uy | +

(..

. ~ia 2 °
$E) = =27 0 = AT =T Ry [ (Ti+T3)- ':‘_"h]

- ix

e
X Ry(2) —

for zeD . 31

We may now determine from (3) the displacements throughout the elastic matrix

2u(u+iv) = i(T|+T3)["R € )+("'—:))ZC'—)(:'—bz)—ei“f—|R’(z)]
+~~——[ Ri(z)— (="—:)x_(:')(f—bz)—c”f"’*z(ﬂ]

. . W | i
- YTy - T.)[he”R (z )—0w +@E = )c’“ao_z[Z—;z—l]

£x

—e"”R;(:)F——:l for zeD". (32)

dy

Again it is found that the displacements may be conveniently expressed as the superposition
of the three natural loads. Figure 3 shows the deformation of the elastic matrix assuming
a crack along the interface from e~*'* to ¢"'* under each of these loads.
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From (4), (5). (29). and (30) the stresses are determined to be

T+ 1w = T+ T =b) + () z—b2) —x(CNE=b2)]

—(Tz-Tl)( ~'°x()—[—' ]+e"‘“’x() Bﬁal])
9o ag= 0

Too— T, + 21,y = 2™ (4(T|+Tz)[(' EE=6)) + 27 a2 (==b2)

2ipe.,.

+X(1/2)(1/z=b, )]] [(5—:“')[X(:)(:—b:)]'

+27 ()= b2) - x(l/Z)(l/Z—bz)]] T:-T)

I |a ’ 1
20 (35— bt I 20 0 (y
x[c G-z )()((z)a—oz2 [aoz l]) +e )((.)a0 3

et (1/:)—'—[-‘3--1]]> for zeD-. (33)

aeZ

Of particular interest is the displacement of the crack face of the elastic matrix. This
may be calculated as the limit of (32) as z — ¢~ or by integrating

Qu (N +i' (D)) = (k+ DD () for te Ay

0}

(7
—

Fig. 3. The deformation of a fixed rigid inclusion bonded to an elastic matrix with a crack from
e~"*to ¢™* for the natural loads: (i) hydrostatic tension, (ii) pure shear with ¢ = n/4 and (iit) an
infinitesimal rigid rotation, g, = 0.5. The reference configuration is the same as in Fig. 2.
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Fig. 3—continued.
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as in Toya (1974). These displacements may be written in the simple form

2/1(u(l)+iv(t))=2(K+1)\/‘;[Si 1:0 , 11—(}}

25 I g .
[4(T|+T)+ LUHE « _{(T:__Tl)e.me____]e:wh—ywn
1+~ a

3 0

. a+6
| sm—z—

for t=¢" and g(0) = nz(:) %—0 (34)
sin—z—

From this expression, we may determine when a point on the elastic crack face will
interpenetrate the inclusion. A negative radial displacement is certainly a necessary con-
dition for interpenetration: however, it is not sufficient. In fact, if a large tangential
displacement is present, a small negative radial displacement may cause the crack face to
pull away from the inclusion, creating an open crack. It can be shown that if

u, (1) —ity(t) = a(@e™” for t=e"ed;
then interpenetration will occur when
a(0) < =2cosb(@) if a(0) >0 or a(l) > —2cosb(l) if a(@) <0. (39)
Note that if displacements are small, i.c., |«(0)] « |, then whenever the radial displacement
is negative it will form a useful estimate of the maximum extent of the interpenctration
region. Furthermore, this estimate is correct in the limit as «(0) — 0. From (22) and (34),

the radial and tangential displacements for each of the natural loads may be seen to be of
the form

u, (1) +iuy (1) = [sm “?.;Q sin %Q]”- () (36)
where the load factor
= —(h-}- l)\/a[, and b(0) = — -g(())
for hydrostatic tension or compression,

k=¢,/a, and b({))—;—~—g(0)

for an infinitesimally rigid rotation, and

k= (x+1) and b(0) = Z(p—gz-o——q(O)

F\/ao

for a pure shear. The function g(9) is monotonically increasing and odd about 8 = 0 with
asymptotes at @ = a and § = —a (see Fig. 4). For hydrostatic tension, (@) = (—0/2) —g(0)
will remain between —x/2 and n/2 except for very small zones near § = —a and 0 = a. As
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g(9)

1+

Fig. 4. The function g(8) for —x < 0 < a, where a = =/4 = 0.785 and x = 1.6.

0 — —a, the asymptote of g(8) will cause () to take on values in

n 3n (?157_"
2°2 ) 2°2/)

causing negative radial displacement for these angles. A similar behavior occurs as 6 — «
(sce Fig. 5). This must cause interpenctration in parts of these regions since when
b(0) = =, 3n,... the radial displacement is negative with zero tangential displacement.
However, these zones arc very small, as can be seen from Fig, 6, which illustrates how the
maximum length of these zones varies as a function of crack length. Thus for hydrostatic
tension, the solution predicts the formation of a large open crack symmetric about 0 = 0
with small zones ncar the tips forming alternating regions of interpenetration and open
crack. For a hydrostatic compression, the previous case is reversed with a large inter-
penetration region formed symmetrically about 8 = 0 with similar small zones near the
crack tips. For a positive infinitesimally rigid rotation (¢, > 0), 5(8) = (n/2) —(0/2) —-g(0)
will now remain between n/2 and = for —x < @ < 0 except for the small zone near 0 = ~a
(see Fig. 5). Thus negative radial displacement is predicted throughout —a < 6 < 0 except for
a very small region ncar = —a. While the interpenetration condition (35) will delay
interpenetration, Fig. 7 illustrates that even for relatively large values of k = em\/;:o, the
region of interpenetration predicted is still quite large. Therefore the positive infinitesimally

Fig. 5. The function »(0) for —z < 0 < a, where a = n/4 x~ 0.785 and x = 1.6 for: (i) hydrostatic
tension, (ii) pure shear with » = =/6, and (iii) an infinitcsimal rigid rotation.
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-2+

Log;o(d(o))

-6

-84

-10{

Fig. 6. Log,, (d(2)) plotted against x for 0 < x < n where d(2) is the length from the crack tip to
the first negative radial displacement for a crack of length 2a.

rigid rotation predicts a large region of interpenetration within —a < @ < 0 and open crack
elsewhere except for small zones at the crack tips. Finally, for a positive pure shear (S > 0),
we find the length of the contact region dependent on ¢. the angle the positive principal
stress makes with the positive real axis. The angle ¢ will cause

30
b(t) = 29— 5 ~g(0)

to translate along the y axis. Thus for a crack with a = n/4 as considered in Fig. 5,if ¢ = 0,
the maximum interpenctration region is restricted to small zones similar to the case of a
hydrostatic tension. If ¢ = n/4, th¢ maximum interpenetration region runs from
—a < ) <0 similar to an infinitesimally rigid rotation. If ¢ = #, the maximum inter-
penetration region extends almost the entire length of the crack in a manner similar to a
hydrostatic compression. Figure 8 illustrates the delay of interpencetration due to (35) for
large values of the load factor k = (S/u\/au)(x+ 1) for the same situation as in Fig. S,
a = /4 and ¢ = n/6. Again, it can be scen that the region of interpenetration predicted by
(35), even for large values of &, remains quite large. By constructing similar graphs as in
Figs 5 and 8, interpenctration zones may be predicted for any crack of length 2«, any angle
of shear ¢, and any load level £.

Fig. 7. The curves a(f?) for k =1 and & = 0.5 and the curve —2cosd(0) for —a <0 <0 for a

positive infinitesimal rigid rotation. x = /4 and & = 1.6. When a(f)) < —2 cos 5(0) the elastic crack

face will interpenctrate the inclusion. Note the maximum range of interpenetration is (—x,0), the

region of interpenctration for & = 0.5 is approximately (—, —0.15), and the region of inter-
penetration for & = 1 is approximately (—a, —0.25).
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1

-2cos b(9)

Fig. 8. The curves a(®) for K = 1 and k = 0.5 and the curve —2cos h(8) for —x < <0 for a

positive pure shear. x = .4, x = 1.6, and ¢ = 7/6. Note the maximum region of interpenctration

is approximately (—x. —0.3), the region of interpenetration for k = 0.5 is approximately
(—2x. —0.39). and the region of interpenetration for k = 1 is approximately (—z. —0.4).

It should be noted that while each of the natural far-field loads has an elastic crack
face displacement of the form a(0) ¢™", the superposition of these natural loads does not
since

1, (1) +ius(0) = ay ()" +a (D) " +a (O) "
ih(th

cannot be written as a(0) ¢™” when the functions b (8) differ. To check for interpencetration
in this casc, onc needs to determine when |4, (0) + iy (1) < 1.

CONCLUSION

By considering a rigid inclusion in an clastic matrix, it has been possible in this
mathematically simpler setting to analyze the behavior of an interface crack. It was seen
that the problem can be decomposed into the superposition of a hydrostatic tension or
compression, a pure shear, and an infinitesimally rigid rotation about infinity. For the first
time, it was possible to write down a simple closed-form expression for the displacements
throughout the clastic body and observe the deformation of the body. The deformation of
the elastic crack face under cach of the natural loads could be casily analyzed and the
regions of interpenetration determined. In most instances, it was found that this region of
interpenetration was not small. Only a hydrostatic tension always predicts small inter-
penetration zones analogous to a Griffith interface crack under a uniaxial tension normal
to the crack faces. Thus, in most loading situations, if the behavior of the material near the
crack is to be accurately determined, a model which allows the crack faces to come into
contact is necessary. The author intends to address the contact model in future studics.
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APPENDIX
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We shall first consider the function

where
Ao =

with the branch of w#s defined by —a < arg (w) < 2n—a. We shall represent the expansions of this function about
zero and infinity by

() =Y a for |z1<l and x(z)= Y bzt for jz[ > 1
k=0

k=1
The first two terms of cach expansion are

K)

In(x) | In(x) .
a, = i, a‘=u,,<cosaz—~-;-sma. by=1, and b, =cosa+ - sin a.

We shalf need the following two integrals:
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Each integral may be calculated by residues using the contour shown in Fig. 9 and the fact that x* (1) = —xy (1)
forre A,
We also need the following results that if
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Fig. 9. Contour of integration for the integrals (A1) and (A2) in the Appendix.
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Note that it can be shown that
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